Explicit separating invariants for cyclic P-groups

نویسنده

  • Müfit Sezer
چکیده

We consider a finite dimensional indecomposable modular representation of a cyclic p-group and we give a recursive description of an associated separating set: We show that a separating set for a representation can be obtained by adding to a separating set for any subrepresentation some explicitly defined invariant polynomials. Meanwhile, an explicit generating set for the invariant ring is known only in a handful of cases for these representations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separating Invariants for Modular P -groups and Groups Acting Diagonally

We study separating algebras for rings of invariants of finite groups. We describe a separating subalgebra for invariants of p-groups in characteristic p using only transfers and norms. Also we give an explicit construction of a separating set for invariants of groups acting diagonally. Let F be an algebraically closed field and let G be a finite group. Consider a faithful representation ρ : G ...

متن کامل

ar X iv : m at h / 05 11 30 0 v 1 [ m at h . A G ] 1 1 N ov 2 00 5 Typical separating invariants

It is shown that a trivial version of polarization is sufficient to produce separating systems of polynomial invariants: if two points in the direct sum of the G–modules W and m copies of V can be separated by polynomial invariants, then they can be separated by invariants depending only on ≤ 2 dim(V ) variables of type V ; when G is reductive, invariants depending only on ≤ dim(V ) + 1 variabl...

متن کامل

Separating Invariants for Arbitrary Linear Actions of the Additive Group

We consider an arbitrary representation of the additive group Ga over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.

متن کامل

Separating Invariants and Finite Reflection Groups

Roughly speaking, a separating algebra is a subalgebra of the ring of invariants whose elements distinguish between any two orbits that can be distinguished using invariants. In this paper, we introduce a more geometric notion of separating algebra. This allows us to prove that when there is a polynomial separating algebra, the group is generated by reflections, and when there is a complete int...

متن کامل

Twisted quandle homology theory and cocycle knot invariants

The quandle homology theory is generalized to the case when the coefficient groups admit the structure of Alexander quandles, by including an action of the infinite cyclic group in the boundary operator. Theories of Alexander extensions of quandles in relation to low dimensional cocycles are developed in parallel to group extension theories for group cocycles. Explicit formulas for cocycles cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011